Logarithmic Functions

Lecture 35 Section 4.2

Robb T. Koether

Hampden-Sydney College

Wed, Mar 29, 2017

Reminder

Reminder

• Test #3 is this Friday, March 31.

Reminder

Reminder

- Test #3 is this Friday, March 31.
- It will cover Chapter 3.

Reminder

Reminder

- Test #3 is this Friday, March 31.
- It will cover Chapter 3.
- Be there.

Objectives

Objectives

- Learn (or review) the properties of logarithmic expressions.
- Learn the properties of logarithmic functions.

Logarithms

Definition (Logarithm)

Let b > 0 and let x and y be real numbers. If

$$b^{x}=y$$
,

then x is the **base-**b **logarithm** of y. We write this as

$$x = \log_b y$$
.

Properties of Logarithms

The following properties hold for all bases b > 0 and all expressions u.

• Equality: $\log_b u = \log_b v$ if and only if u = v.

Properties of Logarithms

- Equality: $\log_b u = \log_b v$ if and only if u = v.
- **Products**: $\log_b uv = \log_b u + \log_b v$.

Properties of Logarithms

- Equality: $\log_b u = \log_b v$ if and only if u = v.
- **Products**: $\log_b uv = \log_b u + \log_b v$.
- Quotients: $\log_b \left(\frac{u}{v} \right) = \log_b u \log_b v$.

Properties of Logarithms

- Equality: $\log_b u = \log_b v$ if and only if u = v.
- **Products**: $\log_b uv = \log_b u + \log_b v$.
- Quotients: $\log_b \left(\frac{u}{v}\right) = \log_b u \log_b v$.
- Powers: $\log_b u^r = r \log_b u$.

Properties of Logarithms

- Equality: $\log_b u = \log_b v$ if and only if u = v.
- **Products**: $\log_b uv = \log_b u + \log_b v$.
- Quotients: $\log_b \left(\frac{u}{v} \right) = \log_b u \log_b v$.
- Powers: $\log_b u^r = r \log_b u$.
- Inversion: $\log_b b^u = u$.

Properties of Logarithms

- **Equality**: $\log_b u = \log_b v$ if and only if u = v.
- **Products**: $\log_b uv = \log_b u + \log_b v$.
- Quotients: $\log_b \left(\frac{u}{v}\right) = \log_b u \log_b v$.
- Powers: $\log_b u^r = r \log_b u$.
- Inversion: $\log_b b^u = u$. Also, $b^{\log_b u} = u$.

Properties of Logarithms

- **Equality**: $\log_b u = \log_b v$ if and only if u = v.
- **Products**: $\log_b uv = \log_b u + \log_b v$.
- Quotients: $\log_b \left(\frac{u}{v}\right) = \log_b u \log_b v$.
- Powers: $\log_b u^r = r \log_b u$.
- Inversion: $\log_b b^u = u$. Also, $b^{\log_b u} = u$.
- Change of base: $\log_b x = \frac{\log_a x}{\log_a b}$.

Natural Logarithms

Definition (Natural Logarithm)

When the base of the logarithm is the natural base *e*, the logarithm is called the **natural logarithm** and the notation is

In x

instead of $\log_e x$.

Logarithmic Functions

Definition (Logarithmic Function)

A **logarithmic function** is a function of the form $f(x) = \log_b x$ for some base b > 0, $b \ne 1$.

Example 4.2.12 (modified)

Example 4.2.12 (modified)

Millicent has \$1,500 to invest and wants it to grow to \$2,000 in 5 years.

(a) At what annual rate *r*, compounded annually, must she invest her money in order to achieve her goal?

Example 4.2.12 (modified)

- (a) At what annual rate *r*, compounded annually, must she invest her money in order to achieve her goal?
- (b) At what annual rate, if compounding is quarterly?

Example 4.2.12 (modified)

- (a) At what annual rate *r*, compounded annually, must she invest her money in order to achieve her goal?
- (b) At what annual rate, if compounding is quarterly?
- (c) At what annual rate, if compounding is continuous?

Example 4.2.12 (modified)

- (a) At what annual rate *r*, compounded annually, must she invest her money in order to achieve her goal?
- (b) At what annual rate, if compounding is quarterly?
- (c) At what annual rate, if compounding is continuous?
- (d) If her investment is compounded monthly at 6%, how long would it take to reach \$4,000?